Adrian Jimenez

Researcher & PhD Candidate

Short Bio

Adrian Jimenez is a Computer Engineer, received at the National University of Tucumán, Argentina in 2013. He is currently a researcher member and PhD candidate of the Advanced Informatics Technology Research Group (GITIA) since April 2013. He’s current work focuses on intelligent data analysis applied to the management and optimization of energy. His main research interests are Genetic and Evolutionary Algorithms and its applications to Climate and Energy, Data Mining and Big Data Research.

Research Interests

  • Genetic and Evolutionary Algorithms
  • Applications to Climate and Energy

Research Activities

  • Researcher - Grupo de Investigación en Tecnologías Informáticas Avanzadas, Facultad Regional de Tucumán, Universidad Tecnológica Nacional, Argentina

Selected Publications


Métodos aplicados para la selección de variables de entrada en la predicción del consumo eléctrico en el corto plazo.
By F. Villacis Postigo, V. A. Jimenez and A. Will.
In IV Congreso Nacional de Ingenierı́a en Informática/Sistemas de Información, 2016.

Neural Network for Estimating Daily Global Solar Radiation Using Temperature, Humidity and Pressure as Unique Climatic Input Variables.
By V. A. Jimenez, A. Barrionuevo, A. Will and S. Rodriguez.
In Smart Grid and Renewable Energy, no., 7 94-103 Mar. 2016.


Optimización de Constantes Numéricas en Tree-Based Genetic Programming.
By V. A. Jimenez, S. Elli, A. Will and S. Rodriguez.
In Tecnologı́a y Ciencia, no., 27 184-196 Nov. 2015.

Análisis de Variables Temporales para la Predicción del Consumo Eléctrico.
By D. Lizondo, V. A. Jimenez, F. Villacis Postigo, A. Will and S. Rodriguez.
In Revista Técnica Energı́a, no., 11 Jan. 2015.


Imputación de Datos Climáticos Utilizando Algoritmos Genéticos Niching.
By V. A. Jimenez, A. Will, S. Rodriguez and C. Lamelas.
In Acta de la XXXVII Reunión de Trabajo de la Asociación Argentina de Energı́as Renovables y Medio Ambiente, vol. 2, pp. 11139-11148, 2014.

Optimización de Constantes Numéricas en Regresión Simbólica utilizando un Framework de Tree-Based Genetic Programming.
By S. Elli, V. A. Jimenez, A. Will and S. Rodriguez.
In Actas del 2° Congreso Nacional de Ingenierı́a Informática/Sistemas de Información, pp. 114-124, 2014.

Work with Us

We are always interested in new challenges and looking for new motivated people to work with.

If you are interested in colaborated with us, please contact us.

About Us

GITIA was founded on 2008 in order to promote and apply recent research works on advanced technologies to different of domains. Our main application areas cover collaborative work, decision-helping tools and distributed problem solving.